Super-elastic rod

Super-elastic rod

  1. Wang XY, Yeung K, Cheung JPY, Lau JYN, Qi WC, Cheung KMC, Aubin CE. A novel scoliosis instrumentation using special superelastic nickel-titanium shape memory rods : a biomechanical analysis using a calibrated computer model and data from a clinical trial. Spine Deformity. 2020 ;8(3) :369-379. doi : 10.1007/s43390-020-00075-8 
  2. Cheung JPY, Samartzis D, Yeung K, To M, Luk KD, Cheung KM. A randomized double-blinded clinical trial to evaluate the safety and efficacy of a novel super-elastic nickel-titanium spinal rod in adolescent idiopathic scoliosis – 5 year follow-up. European Spine Journal. 2018 ;27(2) : 327-339. Doi :10.1007/s00586-017-5245-x. 
  3. Liu X, Wu S, Yeung KW, Chan YL, Hu T, Xu Z, Liu X, Chung JC, Cheung KM, Chu PK. Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds. Biomaterials. 2011;32(2):330-8.

  4. Liu XM, Wu SL, Chan YL, Chu PK, Chung CY, Chu CL, Yeung KW, Lu WW, Cheung KM, Luk KD. Surface characteristics, biocompatibility, and mechanical properties of nickel-titanium plasma-implanted with nitrogen at different implantation voltages. J Biomed Mater Res A. 2007;82(2):469-78.
  5. Wu S, Liu X, Chan YL, Chu PK, Chung CY, Chu C, Yeung KW, Lu WW, Cheung KM, Luk KD. Nickel release behavior and surface characteristics of porous NiTi shape memory alloy modified by different chemical processes. J Biomed Mater Res A. 2009;89(2):483-9.
  6. Wu S, Liu X, Chan YL, Ho JP, Chung CY, Chu PK, Chu CL, Yeung KW, Lu WW, Cheung KM, Luk KD. Nickel release behavior, cytocompatibility, and superelasticity of oxidized porous single-phase NiTi. J Biomed Mater Res A. 2007;81(4):948-55.
  7. Wu SL, Chu PK, Liu XM, Chung CY, Ho JP, Chu CL, Tjong SC, Yeung KW, Lu WW, Cheung KM, Luk KD. Surface characteristics, mechanical properties, and cytocompatibility of oxygen plasma-implanted porous nickel titanium shape memory alloy. J Biomed Mater Res A. 2006;79(1):139-46.
  8. Yeung KW, Cheung KMC, Lu WW, Chung CY. Optimization of thermal treatment parameters to alter austenitic phase transition temperature of NiTi alloy for medical implant. Materials Science and Engineering: A. 2004;383(2):213-8.
  9. Yeung KW, Lu WW, Luk KD, Cheung KM. Mechanical testing of a smart spinal implant locking mechanism based on nickel-titanium alloy. Spine (Phila Pa 1976). 2006;31(20):2296-303.
  10. Yeung KW, Poon RW, Chu PK, Chung CY, Liu XY, Lu WW, Chan D, Chan SC, Luk KD, Cheung KM. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. J Biomed Mater Res A. 2007;82(2):403-14.
  11. Yeung KW, Poon RW, Liu XY, Ho JP, Chung CY, Chu PK, Lu WW, Chan D, Cheung KM. Corrosion resistance, surface mechanical properties, and cytocompatibility of plasma immersion ion implantation-treated nickel-titanium shape memory alloys. J Biomed Mater Res A. 2005;75(2):256-67.
  12. Yeung KW, Poon RW, Liu XY, Ho JP, Chung CY, Chu PK, Lu WW, Chan D, Cheung KM. Investigation of nickel suppression and cytocompatibility of surface-treated nickel-titanium shape memory alloys by using plasma immersion ion implantation. J Biomed Mater Res A. 2005;72(3):238-45.